ML Mittelstadt, EL Giovanucci, L Mucci, and M Loda. 8/29/2016. “The Intersection of Epidemiology and Pathology.” In Pathology and Epidemiology of Cancer. Dordrecht: Springer Verlag.
8/29/2016. Pathology and Epidemiology of Cancer, Pp. 670. Dordrecht: Springer Verlag.
AS McCampbell, ML Mittelstadt, R Dere, S Kim, L Zhou, B Djordjevic, PT Soliman, Q Zhang, C Wei, SD Hursting, KH Lu, RR Broaddus, and CL Walker. 2016. “Loss of p27 Associated with Risk for Endometrial Carcinoma Arising in the Setting of Obesity.” Curr Mol Med, 16, 3, Pp. 252-65.Abstract
Endometrial carcinoma (EC) exhibits the strongest association with obesity of all cancers. Growth of these tumors is driven by PI3K/AKT activation, and opposed by tumor suppressors, including the tuberous sclerosis complex 2 (TSC-2) and p27, with inactivation of TSC2 and loss or cytoplasmic mislocalization of p27 both being linked to PI3K/AKT activation. However, little is known about the involvement of p27 in the development of EC arising in the setting of obesity, especially its role early in disease progression. Using a panel of EC cell lines, in vitro studies using PI3K inhibitors provided evidence that p27 rescue contributes to the efficacy of interventions that inhibit endometrial cell growth. In "at risk" obese patients, and in an animal model of obesity-associated EC (Tsc2-deficient Eker rats), p27 was moderately-to-severely reduced in both "normal" endometrial glands as well as in endometrial complex atypical hyperplasia (obese women), and endometrial hyperplasia (obese rats). In obese Eker rats, an energy balance intervention; caloric restriction from 2-4 months of age, reduced weight, increased adiponectin and lowered leptin to produce a favorable leptin:adiponectin ratio, and reduced circulating insulin levels. Caloric restriction also increased p27 levels, relocalized this tumor suppressor to the nucleus, and significantly decreased hyperplasia incidence. Thus, dietary and pharmacologic interventions that inhibit growth and decrease risk for development of endometrial lesions are associated with increased expression and nuclear (re)localization of p27. These data suggest that p27 levels and localization may be useful as a biomarker, and possible determinant, of risk for EC arising in the setting of obesity.
Megan L Mittelstadt and Rekha C Patel. 2012. “AP-1 mediated transcriptional repression of matrix metalloproteinase-9 by recruitment of histone deacetylase 1 in response to interferon β.” PLoS One, 7, 8, Pp. e42152.Abstract
Matrix metalloproteinase-9 (MMP-9) is a 92 kDa zinc-dependant endopeptidase that degrades components of the extracellular matrix. Increased expression of MMP-9 is implicated in many pathological conditions including metastatic cancer, multiple sclerosis, and atherosclerosis. Although it has been widely noted that interferon-β (IFNβ) downregulates both the basal and phorbol 12-myristate 13-acetate (PMA)-induced MMP-9 expression at the transcriptional level, the molecular mechanism of this repression is poorly understood. In the present study we identify a novel mechanism for repression of MMP-9 transcription by IFNβ in HT1080 fibrosarcoma cells. Using reporter assays with promoter deletion constructs we show that IFNβ's inhibitory effects require a region of the promoter between -154 and -72, which contains an AP-1 binding site. Chromatin immunoprecipitation (ChIP) studies indicate that IFNβ increases histone deacetylase (HDAC)-1 recruitment to the MMP-9 promoter and reduces histone H3 acetylation, in addition to reduced NF-κB recruitment. ChIP analysis shows that IFNβ induced HDAC1 recruitment to the MMP-9 promoter and IFNβ mediated transcriptional repression is lost when the AP-1 binding site is inactivated by a point mutation. Altogether, our results establish that the repression of MMP-9 transcription in response to IFNβ occurs by the recruitment of HDAC1 via the proximal AP-1 binding site.
Leigh K Greathouse, Tiffany Bredfeldt, Jeffrey I Everitt, Kevin Lin, Tia Berry, Kurunthachalam Kannan, Megan L Mittelstadt, Shuk-mei Ho, and Cheryl L Walker. 2012. “Environmental estrogens differentially engage the histone methyltransferase EZH2 to increase risk of uterine tumorigenesis.” Mol Cancer Res, 10, 4, Pp. 546-57.Abstract
Environmental exposures during sensitive windows of development can reprogram normal physiologic responses and alter disease susceptibility later in life in a process known as developmental reprogramming. For example, exposure to the xenoestrogen diethylstilbestrol during reproductive tract development can reprogram estrogen-responsive gene expression in the myometrium, resulting in hyperresponsiveness to hormone in the adult uterus and promotion of hormone-dependent uterine leiomyoma. We show here that the environmental estrogens genistein, a soy phytoestrogen, and the plasticizer bisphenol A, differ in their pattern of developmental reprogramming and promotion of tumorigenesis (leiomyomas) in the uterus. Whereas both genistein and bisphenol A induce genomic estrogen receptor (ER) signaling in the developing uterus, only genistein induced phosphoinositide 3-kinase (PI3K)/AKT nongenomic ER signaling to the histone methyltransferase enhancer of zeste homolog 2 (EZH2). As a result, this pregenomic signaling phosphorylates and represses EZH2 and reduces levels of H3K27me3 repressive mark in chromatin. Furthermore, only genistein caused estrogen-responsive genes in the adult myometrium to become hyperresponsive to hormone; estrogen-responsive genes were repressed in bisphenol A-exposed uteri. Importantly, this pattern of EZH2 engagement to decrease versus increase H3K27 methylation correlated with the effect of these xenoestrogens on tumorigenesis. Developmental reprogramming by genistein promoted development of uterine leiomyomas, increasing tumor incidence and multiplicity, whereas bisphenol A did not. These data show that environmental estrogens have distinct nongenomic effects in the developing uterus that determines their ability to engage the epigenetic regulator EZH2, decrease levels of the repressive epigenetic histone H3K27 methyl mark in chromatin during developmental reprogramming, and promote uterine tumorigenesis.
Cirtain MC, Mittelstadt M, Higgins RC, and Polson A. 2010. Cell and Molecular Biology Laboratory Manual. Dubuque: Kendall Hunt and Great River Learning.
Megan Mittelstadt, Andrea Frump, Tuanh Khuu, Vennece Fowlkes, Indhira Handy, Chandrashekhar V Patel, and Rekha C Patel. 2008. “Interaction of human tRNA-dihydrouridine synthase-2 with interferon-induced protein kinase PKR.” Nucleic Acids Res, 36, 3, Pp. 998-1008.Abstract
PKR is an interferon (IFN)-induced protein kinase, which is involved in regulation of antiviral innate immunity, stress signaling, cell proliferation and programmed cell death. Although a low amount of PKR is expressed ubiquitously in all cell types in the absence of IFNs, PKR expression is induced at transcriptional level by IFN. PKR's enzymatic activity is activated by its binding to one of its activators. Double-stranded (ds) RNA, protein activator PACT and heparin are the three known activators of PKR. Activation of PKR in cells leads to a general block in protein synthesis due to phosphorylation of eIF2alpha on serine 51 by PKR. PKR activation is regulated very tightly in mammalian cells and a prolonged activation of PKR leads to apoptosis. Thus, positive and negative regulation of PKR activation is important for cell viability and function. The studies presented here describe human dihydrouridine synthase-2 (hDUS2) as a novel regulator of PKR. We originally identified hDUS2 as a protein interacting with PACT in a yeast two-hybrid screen. Further characterization revealed that hDUS2 also interacts with PKR through its dsRNA binding/dimerization domain and inhibits its kinase activity. Our results suggest that hDUS2 may act as a novel inhibitor of PKR in cells.